The Ions H_{n^+} and the Possibility of LiH_{n^+} and BeH_{n^+}

By J. EASTERFIELD and J. W. LINNETT*

(Department of Physical Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EP)

Summary Calculations have been carried out relating to the stability and shape of the ions H_n^+ , where *n* is odd, and comments are included on the possible existence of the ions LiH_n^+ and BeH_n^+ .

CLAMPITT AND GOWLAND¹ have recently made a mass spectrometric study of the ions H_n^+ . They find that, except for H_{2}^{+} , *n* is odd for all the other ions they observe. They discuss the structure of these ions and suggest that they probably involve the clustering of H₂ molecules round an H_3^+ nucleus. Thus H_5^+ and H_9^+ are to be regarded as $[H_3^+, H_2]$ and $[H_3^+, (H_2)_3]$ respectively.

Calculations we have carried out favour this conclusion and suggest some other possible experiments. Poshusta and Matsen² have also performed calculations for the various H_n^+ systems.

Our calculations were performed using the Floating Spherical Gaussian Type Orbital (FSGTO) method of Frost³ in which pairs of electrons are assigned to orbitals which are of the form $\exp(-ar^2)$. According to these calculations H_{3}^{+} is in the form of an equilateral triangle with sides of 0.88 Å and a stability with respect to H₂ and H⁺ of 110 kcal./mole. Detailed calculations⁴ give for these figures 0.89 Å and 115 kcal./mole. respectively. Poshusta and Matsen give a side of 0.90 Å and a stability of 125 kcal./ mole.

Several nuclear configurations of H₅⁺ have been investigated. The most stable is one in which three protons are disposed as an isosceles triangle having one side of length 0.85 Å and the other two of length 0.91 Å. A line through the other two protons is at rightangles to the plane of the equilateral triangle and the whole assembly has C_{2v} symmetry. (I.e. the arrangement is that of a distorted tetrahedron). The H-H separation for this pair is 0.81 Å which is a little greater than that in H_2 (0.78 Å by this method) and the distance of the protons of the " H_2 " from the proton at the apex of the isosceles triangle is 1.54 Å. One Gaussian orbital is centred within the "H₃+" triangle and the other at a point equidistant from the nuclei in the ${\rm ``H_2'}$

- R. D. Poshusta and F. A. Matsen, J. Chem. Phys., 1967, 47, 4795.
 A. A. Frost, J. Chem. Phys., 1967, 47, 3707.
 H. Conroy, J. Chem. Phys., 1964, 41, 1341.

molecule at a distance of 0.08 Å from the line joining them. The ion H_5^+ must therefore be regarded as an H_2 molecule polarised by the neighbouring H_3^+ such that significant binding is achieved. The binding energy relative to H_{3}^{+} and H₂ is calculated to be 9 kcal./mole. Poshusta and Matsen calculate a dissociation energy of 18 kcal./mole. They state, however, that the stable geometry of H_5^+ has D_{2d} symmetry and consequently do not regard the species as $[H_3^+, H_2]$. We find that their configuration is 3 kcal./ mole. less stable than the $[H_3^+, H_2]$ configuration using the FSGTO method. Consequently their calculated dissociation energy from $[H_3^+, H_2]$ may be expected to be about 20 kcal./mole.

Calculations for H_{7}^{+} (with C_{2v} symmetry) show that it is stable relative to H_5^+ and H_2 , though the dissociation energy is about 20% less than for H_5^+ .

Calculations have also been carried out for LiH₂⁺ which is triangular in shape. Again, the binding results from the lateral polarisation of the H_2 molecule by the lithium ion. The Li-H distance is 1.82 Å and the H-H distance 0.80 Å. The dissociation energy to Li⁺ and H₂ is calculated to be 12 kcal./mole. which is greater than that calculated by the same procedure for H_5^+ into H_3^+ and H_2 . Hence, it should be possible to observe LiH_{2}^{+} . The dissociation energy of LiH_4^+ to LiH_2^+ and H_2 is calculated to be 11.5 kcal./mole. and for LiH_{6}^{+} to LiH_{4}^{+} and H_{2} 8 kcal./mole.

Clampitt and Gowland obtained the H_n^+ ions by bombarding solid hydrogen at 3° K with electrons. The present calculations suggest that, if a mixture of lithium (e.g. from an atomic beam) and hydrogen were condensed as an intimate mixture on a cold surface and bombarded with electrons LiH_{n}^{+} (*n* even) might be obtained.

Calculations for $BeH_{2^{2+}}$ (isoelectronic with $LiH_{2^{+}}$) suggest that, while it is stable with respect to Be^{2+} and H_2 , it is unstable with respect to BeH⁺ and H⁺. Consequently, with beryllium substituted for lithium in the mixture with hydrogen the ions might be BeH_n^+ in which *n* is odd.

(Received, November 20th, 1969; Com. 1762.)

¹ R. Clampitt and L. Gowland, Nature, 1969, 223, 815.