The Ions $\mathbf{H}_{n}{ }^{+}$and the Possibility of $\mathbf{L i H}_{n}{ }^{+}$and $\mathrm{BeH}_{\boldsymbol{n}}{ }^{+}$

By J. Easterfield and J. W. Linnett*
(Department of Physical Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EP)

Summary Calculations have been carried out relating to the stability and shape of the ions $\mathrm{H}_{n}{ }^{+}$, where n is odd, and comments are included on the possible existence of the ions $\mathrm{LiH}_{n}{ }^{+}$and $\mathrm{BeH}_{n}{ }^{+}$.

Clampitt and Gowland ${ }^{1}$ have recently made a mass spectrometric study of the ions $\mathrm{H}_{n}{ }^{+}$. They find that, except for $\mathrm{H}_{2}{ }^{+}, n$ is odd for all the other ions they observe. They discuss the structure of these ions and suggest that they probably involve the clustering of H_{2} molecules round an $\mathrm{H}_{3}{ }^{+}$nucleus. Thus $\mathrm{H}_{5}{ }^{+}$and $\mathrm{H}_{9}{ }^{+}$are to be regarded as $\left[\mathrm{H}_{3}{ }^{+} . \mathrm{H}_{2}\right.$] and $\left[\mathrm{H}_{3}{ }^{+} .\left(\mathrm{H}_{2}\right)_{3}\right]$ respectively.

Calculations we have carried out favour this conclusion and suggest some other possible experiments. Poshusta and Matsen ${ }^{2}$ have also performed calculations for the various $\mathrm{H}_{n}{ }^{+}$systems.

Our calculations were performed using the Floating Spherical Gaussian Type Orbital (FSGTO) method of Frost ${ }^{3}$ in which pairs of electrons are assigned to orbitals which are of the form $\exp \left(-a r^{2}\right)$. According to these calculations $\mathrm{H}_{3}{ }^{+}$is in the form of an equilateral triangle with sides of $0.88 \AA$ and a stability with respect to H_{2} and H^{+}of 110 kcal./mole. Detailed calculations ${ }^{4}$ give for these figures $0.89 \AA$ and $115 \mathrm{kcal} . /$ mole. respectively. Poshusta and Matsen give a side of $0.90 \AA$ and a stability of 125 kcal ./ mole.

Several nuclear configurations of $\mathrm{H}_{5}{ }^{+}$have been investigated. The most stable is one in which three protons are disposed as an isosceles triangle having one side of length $0.85 \AA$ and the other two of length $0.91 \AA$. A line through the other two protons is at rightangles to the plane of the equilateral triangle and the whole assembly has $C_{2 v}$ symmetry. (I.e. the arrangement is that of a distorted tetrahedron). The $\mathrm{H}-\mathrm{H}$ separation for this pair is $0.81 \AA$ which is a little greater than that in $\mathrm{H}_{2}(0.78 \AA$ by this method) and the distance of the protons of the " H_{2} " from the proton at the apex of the isosceles triangle is $1.54 \AA$. One Gaussian orbital is centred within the " $\mathrm{H}_{3}+$ " triangle and the other at a point equidistant from the nuclei in the " H_{2} "
molecule at a distance of $0.08 \AA$ from the line joining them. The ion $\mathrm{H}_{5}{ }^{+}$must therefore be regarded as an H_{2} molecule polarised by the neighbouring $\mathrm{H}_{3}{ }^{+}$such that significant binding is achieved. The binding energy relative to $\mathrm{H}_{3}+$ and H_{2} is calculated to be 9 kcal ./mole. Poshusta and Matsen calculate a dissociation energy of $18 \mathrm{kcal} . / \mathrm{mole}$. They state, however, that the stable geometry of $\mathrm{H}_{5}{ }^{+}$has $D_{2 d}$ symmetry and consequently do not regard the species as $\left[\mathrm{H}_{3}{ }^{+} \cdot \mathrm{H}_{2}\right]$. We find that their configuration is 3 kcal ./ mole. less stable than the $\left[\mathrm{H}_{3}+. \mathrm{H}_{2}\right]$ configuration using the FSGTO method. Consequently their calculated dissociation energy from $\left[\mathrm{H}_{3}{ }^{+} . \mathrm{H}_{2}\right]$ may be expected to be about $20 \mathrm{kcal} . /$ mole.

Calculations for $\mathrm{H}_{7}+$ (with $\mathrm{C}_{2 v}$ symmetry) show that it is stable relative to $\mathrm{H}_{5}{ }^{+}$and H_{2}, though the dissociation energy is about 20% less than for $\mathrm{H}_{5}{ }^{+}$.

Calculations have also been carried out for $\mathrm{LiH}_{2}{ }^{+}$which is triangular in shape. Again, the binding results from the lateral polarisation of the H_{2} molecule by the lithium ion. The $\mathrm{Li}-\mathrm{H}$ distance is $1.82 \AA$ and the $\mathrm{H}-\mathrm{H}$ distance $0.80 \AA$. The dissociation energy to Li^{+}and H_{2} is calculated to be $12 \mathrm{kcal} . / \mathrm{mole}$. which is greater than that calculated by the same procedure for $\mathrm{H}_{5}+$ into $\mathrm{H}_{3}{ }^{+}$and H_{2}. Hence, it should be possible to observe $\mathrm{LiH}_{2}{ }^{+}$. The dissociation energy of $\mathrm{LiH}_{4}+$ to $\mathrm{LiH}_{2}{ }^{+}$and H_{2} is calculated to be 11.5 kcal ./mole. and for $\mathrm{LiH}_{6}+$ to $\mathrm{LiH}_{4}{ }^{+}$and $\mathrm{H}_{2} 8 \mathrm{kcal} . / \mathrm{mole}$.

Clampitt and Gowland obtained the $\mathrm{H}_{n}{ }^{+}$ions by bombarding solid hydrogen at $3^{\circ} \mathrm{k}$ with electrons. The present calculations suggest that, if a mixture of lithium (e.g. from an atomic beam) and hydrogen were condensed as an intimate mixture on a cold surface and bombarded with electrons $\mathrm{LiH}_{n}{ }^{+}$(n even) might be obtained.

Calculations for $\mathrm{BeH}_{2}{ }^{2+}$ (isoelectronic with $\mathrm{LiH}_{2}{ }^{+}$) suggest that, while it is stable with respect to Be^{2+} and H_{2}, it is unstable with respect to $\mathrm{BeH}{ }^{+}$and H^{+}. Consequently, with beryllium substituted for lithium in the mixture with hydrogen the ions might be $\mathrm{BeH}_{n}{ }^{+}$in which n is odd.
(Received, November 20th, 1969; Com. 1762.)
${ }^{1}$ R. Clampitt and L. Gowland, Nature, 1969, 223, 815.
${ }^{1}$ R. D. Poshusta and F. A. Matsen, J. Chem. Phys., 1967, 47, 4795.
: A. A. Frost, J. Chem. Phys., 1967, 47, 3707.
${ }^{4}$ H. Conroy, J. Chem. Phys., 1964, 41, 1341.

